
Globus GridFTP: What’s
New in 2007

Raj Kettimuthu

Argonne National Laboratory and

The University of Chicago

GridFTP

  A secure, robust, fast, efficient, standards based,
widely accepted data transfer protocol

  Multiple independent implementations can
interoperate
  Both the Condor Project at Uwis and Fermi Lab have

home grown servers that work with ours.

  Lots of people have developed clients independent
of the Globus Project.

  We also supply a reference implementation:
  Server
  Client tools (globus-url-copy)
  Development Libraries

GridFTP

  Two channel protocol like FTP

  Control Channel
  Communication link (TCP) over which commands and

responses flow

  Low bandwidth; encrypted and integrity protected by
default

  Data Channel
  Communication link(s) over which the actual data of

interest flows

  High Bandwidth; authenticated by default;
encryption and integrity protection optional

Striping

  GridFTP offers a powerful feature called striped
transfers (cluster-to-cluster transfers)

Topics for discussion

  Performance enhancements
  LOSF problem and solution

  GridFTP over UDT

  Ease of Use enhancements
  Alternate security mechanism

  GridFTP Where there’s FTP

  Resource Management in GridFTP

  Future directions

Lots of Small Files (LOSF) Problem

  GridFTP and FTP - command response
protocols

  A client can sends one command and then
wait for a “Finished response” before
sending another

  Overhead added on a per file basis

  Performance is best on large files
  Overhead has less impact

  Performance suffers for a large data set
partitioned into many small files

LOSF

  Traditional data transfer pattern

File Request 1

File Request 2

File Request 3

DATA 1

DATA 2

DATA 3

ACK 1

ACK 2

ACK 3

Pipelining

  Data transfer pattern with pipelining

File Request 1
File Request 2
File Request 3

DATA 1

DATA 2

DATA 3

ACK 1

ACK 2

ACK 3

Pipelining
WAN - SDSC and ANL with GSI security

GridFTP over UDT

  UDT is an application-level data transport protocol
that uses UDP to transfer data

  Implement its own reliability and congestion control
mechanisms

  Achieves good performance on high-bandwidth, high-
delay networks where TCP has significant limitations

  GridFTP uses Globus XIO interface to invoke
network I/O operations

GridFTP over UDT

  XIO framework presents a standard open/close/read/
write interface to many different protocol
implementations
  including TCP, UDP, HTTP -- and now UDT

  The protocol implementations are called drivers.
  A driver can be dynamically loaded and stacked by any

Globus XIO application.

  Created an XIO driver for UDT reference
implementation

  Enabled GridFTP to use it as an alternate transport
protocol

GridFTP over UDT
Argonne to NZ Throughput in

Mbit/s
Argonne to LA

Throughput in Mbit/s

Iperf – 1 stream 19.7 74.5

Iperf – 8 streams 40.3 117.0

GridFTP mem TCP – 1 stream 16.4 63.8

GridFTP mem TCP – 8 streams 40.2 112.6

GridFTP disk TCP – 1 stream 16.3 59.6

GridFTP disk TCP – 8 streams 37.4 102.4

GridFTP mem UDT 179.3 396.6

GridFTP disk UDT 178.6 428.3

UDT mem 201.6 432.5

UDT disk 162.5 230.0

Alternate security mechanism
  GridFTP traditionally uses GSI for establishing

secure connections

  In some situations, preferable to use SSH security
mechanism

  Leverages the fact that an SSH client can remotely
execute programs by forming a secure connection
with SSHD
  The client (globus-url-copy) acts as an SSH client

and remotely executes a Globus GridFTP server

  All of the standard IO from the remote program is
routed back to the client.

SSH security mechanism

  Client support for using SSH is automatically
enabled

  On the server side (where you intend the client to
remotely execute a server)
  setup-globus-gridftp-sshftp -server

  In order to use SSH as a security mechanism, the
user must provide urls that begin with sshftp:// as
arguments.
  globus-url-copy sshftp://<host>:<port>/<filepath>

file:/<filepath>
  <port> is the port in which sshd listens on the host

referred to by <host> (the default value is 22).

GridFTP Where there’s FTP
(GWFTP)

  GridFTP has been in existence for some
time and has proven to be quite robust and
useful

  Only few GridFTP clients available
  FTP has innumerable clients
  GWFTP - created to leverage the FTP

clients
  A proxy between FTP clients and GridFTP

servers

GWFTP

  Two security options provided with GWFTP
to authenticate its client
  Password based and host based

FTP
 Client

GWFTP
(GSI

Credential)

wiggum.mcs.anl.gov
GridFTP Server

(2811)

USER <GWFTP username> ::gsiftp://
wiggum.mcs.anl.gov:2811/

PASS GSI
Authentication

Get request
Get request
Data Data

Resource management

  Under extreme loads it is possible that GridFTP
servers require more memory than the system has
and cause the system to fall over

  Developed a service called gfork to help avoid this
situation

  Gfork - a service like inetd that listens on a TCP
port and runs a configurable executable in a child
process whenever a connection is made

  Associated with Gfork is a user defined master
process

  Master process runs for the lifetime of the gfork
daemon

Gfork

inetd Child
 process

Connection

request
Spawn
process

Gfork
(plugin)

Child
 process

Connection

request
Spawn
process

pipe

  GFork creates bi-directional pipes between the child
processes and the master service.
  These pipes are used for communication between the
 child process and a master process plugin.

Resource Management

  Created a GridFTP Gfork plugin that has a
memory limiting option

  Limit memory usage to a given value or to
the maximum amount of RAM in the
system.

  Most of the memory is given to the first
few connections

  When the plugin detects that it is
overloaded, each session is limited to half
the available memory.

Data Transfer Scheduling

  Collaborating with Prof. Saday’s group at
Ohio State to develop a data transfer
scheduling framework

  Enhance GridFTP servers to expose status
as WS resource properties

  Take advantage of the network
provisioning services
  Collaborating with Terapath and

LambdaStation projects

Data Transfer Scheduling

Data Transfer
Scheduler

Network
 reservation

service

Managed Object
Placement Service

(Enhanced GridFTP)

Storage
Manager

Data Transfer
Scheduler

Infiniband Over SONET
Need specialized hardware: Obsidian longbow

 1. IB over SONET/Ethernet – frame conversion
 2. Buffer-based termination of IB flow control

Linux
host

ORNL
700 miles

Linux
host

3300 miles 4300 miles

ORNL loop -0.2 mile: 7.5Gbps

IB 4x: 8Gbps (full speed)
Host-to-host local switch:7.5Gbps

IB 4x

ORNL-Chicago loop – 1400 miles: 7.46Gbps

ORNL- Chicago - Seattle loop – 6600 miles: 7.23Gbps

ORNL – Chicago – Seattle - Sunnyvale loop – 8600 miles: 7.20Gbps

GridFTP over Infiniband

  Can use infiniband through Sockets Direct Protocol
(SDP)

  SDP provides a socket interface for Open Fabrics
software stack (a standard implemented by
infiniband and iwarp)
  No kernel bypass

  User level verbs to interface directly with
infiniband hardware
  Develop a XIO driver for verbs interface

GridFTP Tutorial at SC 2007

  When: Nov 12, 2007 8:30 AM - 12:00 PM
  Where: SC07 conference at Reno-Sparks

Convention Center, Reno, NV
  The tutorial consists on hands-on exercises and

demonstrations
  Installation of the Globus GridFTP server and

configuring the environment
  Running the server in various security modes
  Setting up the proper GSI security environment
  Running client/server and 3rd party transfer
  Performance optimizations
  Setting up striped server & running striped transfers
  GridFTP over UDT

